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Abstract. It is shown that there may be more abundant solitary wave structures of the nonlinear
coupled scalar field than those of single scalar fields. In this paper, starting from a known simple
example which is used in particle physics and condensed matter physics, we obtained various exact
solitary wave and conoidal wave solutions by solvingφ4, φ3, φ + φ3, φ3 + φ4, φ6, φ5 andφα

models. Generally, from an arbitrary given single scalar field we may obtain a subset of solutions
which are also solutions of the nonlinear coupled scalar fields.

1. Introduction

To describe the complicated physics phenomena, physicists and mathematicians have
established various nonlinear models. Usually, one has to use different methods to find some
exact solutions for different models. It is interesting that if we can find some useful solutions
of a model from other models. In some special cases, one may establish some completely
equivalent relations among models that are used in quite different categories. For instance, the
well known sine–Gordon (sG) system in (1+1)-dimensions is equivalent to the massive Thirring
model [1], to the two-dimensional coulomb gas [2], to the continuous limit of the latticex–y–z
spin-12 model [3] and to the massive O(2) nonlinearσ model [4]. In some other cases, though
the model is not completely equivalent, there may still be some relations among their special
solutions. In [5], we have mapped the special solutions of the constrained cubic nonlinear
Klein–Gordon (3NKG orφ4) equation to those of the sG, double sG (DsG) , Ginzburg–Landau
(GL), Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. In [6], some
special solutions of the simple models (sG andφ4) have been deformed to those of the complex
models (DsG,φ6 andφ4 + φ3).

In this paper we study the solitary wave structure of the nonlinear coupled scalar fields
(NCSF)ψ andφ which satisfy

�ψ ≡
D∑
i=1

ψxixi − ψtt = a1ψ + a2ψ
3 + a3φ

2ψ (1)

�φ = b1φ + b2φ
3 + b3ψ

2φ (2)

† Address for correspondence.
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by using some single nonlinear Klein–Gordon (NKG) fields. The lower-dimensional form of
the system (1) and (2) appears in some different physical fields such as particle physics and
field theory [7] and condensed matter physics [8].

In the one-dimensional case(ψy = ψz = ψt = φz = φy = φt = 0) (or for travelling wave
solutions of (1) and (2)), Rajaraman [7] and Wang [9] constructed three types of solitary wave
solutions of the system (1) and (2) for some special constant parametersai , bi . In sections 2–4,
we will see that the solitary wave solutions of the NCSF are much more abundant than the
known ones.

In section 2, we give a general relation among some special solutions of an arbitrary NKG
field and those of the NCSF system (1) and (2). In section 3, we list some possible polynomial
nonlinearities for the fieldφ and special parametersai , bi . The exact solitary wave and conoidal
wave solutions of the models listed in section 3 are discussed in section 4. Section 5 is a short
summary and discussion.

2. Special solutions of NCSF from a single Klein–Gordon field

Notice that the systems (1) and (2) are form invariant under the transformationsψ →±ψ and
φ→±φ, we can writeψ as

ψ =
√
(�φ − (b1φ + b2φ3))/(b3φ) (3)

from (2). Substituting (3) into (1) we have(x0 ≡ it)

D∑
i=0

{−b3

4
(φ�φxi − φxi �φ − 2b2φ

3φxi )
2

+
b3

2
(2φ2

xi
�φ − φ(�φ)(�φxi )− 2φφxi �φxi + φ2�φxixi

+(b1φ
2 + b2φ

4)�φxi + 2b1φ
2
xi
− (b1 + 3b2φ

2)φ2φxixi )(�φ − (b1φ + b2φ
3))

}
−(a1φ

2b3 + a2φ(�φ − (b1φ + b2φ
3)) + a3b3φ

4)(�φ − (b1φ + b2φ
3))2 = 0.

(4)

Using the computer algebra, say,Maple orMathematica, one can easily prove that some
special types of solutions of (4) can be solved by means of the following pair system:

�φ = G(φ) (5)

(∇̃φ)2 ≡
D∑
i=1

φ2
xi
− φ2

t = F(φ) (6)

with G(φ) ≡ G being an arbitrary function ofφ andF(φ) ≡ F being given by

F = −2φ

b3W
((2a2 + b3)G

3 + (b3(2a1φ + φ3b2 − φb1 + 2a3φ
3)− 6a2(φb1 + φ3b2))G

2

+(6a2φ
2(φ2b2 + φb1)

2 − b3(4a3φ
4b1 + 4a3φ

6b2

+2φ6b2
2 + 4a1φ

2b1 + 4a1φ
4b2))G

+b3(4a3φ
7b1b2 + 4a1φ

5b1b2 + 2a1φ
3b2

1

+2a1φ
7b2

2 − 2φ4b2b1G + 2a3φ
9b2

2 + 2a3φ
5b2

1)

−a2(6φ
7b1b

2
2 + 6φ5b2

1b2 + 2φ3b3
1 + 2φ9b3

2) + b3(φ
4b2 + φ2b1− φG)GGφ)

(7)
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where

W = 4Gφ(b1 + 3b2φ
2)− 4φ4b2b1− 3G2 + 2φ2(φ3b2 + φb1−G)Gφφ

−φ(4φb1 + 8φ3b2 − φGφ − 2G)Gφ. (8)

It is interesting that the arbitrariness ofG in (5) means that for anarbitrary given NKGF, there
may exist some special solutions which are also the solutions of the NCSF system (1) and (2).
So we can conclude that the solitary wave structure of the NCSF may be quite rich.

In principle, whence a solution of the single NKGF (5) with the constraint (6) is given,
the corresponding solution of the NCSF is obtained at the same time. However, to solve the
general NKG equation (5) with the constraint condition (6) is still very difficult. In the next
section, we restrictF andG as some special polynomials ofφ:

F = F0 +
N∑
n=1

2

n
Fnφ

n G = 1
2Fφ =

N∑
n=1

Fnφ
n−1. (9)

The above restriction ofF andG may lead to some constraints on the parameters{ai, bi} at
the same time.

3. Possible polynomial solutions ofF

For simplicity, we give out only the results forN 6 6 and nonzero{ai, bi} in this section.
Substituting (5) and (6) with (9) andN = 6 into (4) and vanishing the coefficients ofφk for
different k, we have 17 overdetermined complicated algebraic equations for 13 parameters
{Fk, (k = 0, 1, . . . ,6), ai, bi, (i = 1, 2, 3)}. Because of the complexity of these equations we
write down only their final nontrivial solutions.

Case A. Without any constraints on the model parameters

If we do not put any constraints on the model parameters{ai, bi}, we find only two possible
polynomial selections ofF for N 6 6.

Case A.1.

F = F0 + b1φ
2 + 1

2b2φ
4 (10)

whereF0 is an arbitrary constant. This simple situation correspondsψ is a trivial solution, i.e.
ψ = 0.

Case A.2.

F = A

B
− (2a3a1− a3b1− 2a1b2)b3− a2b1(2a3 + 3b2)

(2a2 − b3)a3− (3a2 − 2b3)b2
φ2 − 1

2

−a3b3 + a2b2

−a2 + b3
φ4 (11)

whereA andB are related to{ai, bi} by

A = 2(a2 − b3)(b1− a1)(2a2b1(b2 − a3) + (b2a2 − 2b3b2 + a3b3)a1)

B = (a3(b3− 2a2) + b2(3a2 − 2b3))
2.

In this situation, the related scalar fieldψ is determined by

ψ =
√
b2 − a3

b3− a2
φ2 − 2(b1− a1)(b2 − a3)

(2a2 − b3)a3− (3a2 − 2b3)b2
. (12)

The model (5) with (9) is called theφ4 model ifN = 4 andF1 = F3 = 0. The first two
subcases A.1 and A.2 are just related to the knownφ4 model.
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Case B.b1 = a1

If we put a constraintb1 = a1 to the model equations (1) and (2), we find a further possibleφ4

selection with

F = F0 + a1φ
2 − 1

2

−a3b3 + a2b2

−a2 + b3
φ4 (13)

whereF0 being an arbitrary constant. In this subcase, the correspondingψ is given by

ψ =
√
b2 − a3

b3− a2
φ. (14)

The sech-type solitary wave solution related to this case for travelling wave andb1 > 0, b2 < 0
has been given in [9]. If there is no further constraint on the model parameters, we find that
there is no other polynomialF selection forN 6 6 in b1 = a1 case.

Case C.8b3 = 3a2

If the model parameterb3 is related toa2 by 8b3 = 3a2 andN 6 6, we have only three possible
polynomialF selections as follows.

Case C.1.

F = 1

6

(b1− a1)(4b1− a1)

3b2 − a3
+

(
−1

2
a1 +

3

2
b1

)
φ2 +

(
2b2 − 1

2
a3

)
φ4

+
1

6

(18b2
2 − 9a3b2 + a2

3)

4b1− a1
φ6. (15)

In this case, the relatedψ field is given by

ψ =
√

1

2b3

(
(6b2 − a3)(3b2 − a3)

(4b1− a1)
φ4 + 2(3b2 − a3)φ2 + b1− a1

)
. (16)

Case C.2.

F = −2

3

(b1− a1)(−a1 + 4b1)

6b2 − a3
+ b1φ

2 +

(
−1

2
a3 + 2b2

)
φ4 +

1

6

(18b2
2 − 9a3b2 + a2

3)

4b1− a1
φ6.

(17)

In this subcase,ψ is given by

ψ =
√

3b2 − a3

b3

(
6b2 − a3

4b1− a1
φ4 + φ2

)
. (18)

Case C.3.

F = 1

6

(a1− 4b1)(6a1b2 + a3a1− 16a3b1 + 48b1b2)

(6b2 − a3)2
+

1

2

a3a1− 6a3b1− 3a1b2 + 24b1b2

6b2 − a3
φ2

+

(
2b2 − 1

2
a3

)
φ4 − (18b2

2 − 9a3b2 + a2
3)

6(a1− 4b1)
φ6 (19)

while the correspondingψ is given by

ψ =
√

3b2 − a3

2b3(6b2 − a3)(4b1− a1)
((a1− 4b1) + (a3− 6b2)φ

2). (20)

The subcases C.1–C.3 are related to the so-calledφ6 model (the model (5) withF1 = F3 =
F5 = 0).
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Case D.3b2 = 8a3

If b2 = 8a3/3, some special solutions of the system (1) and (2) can be obtained from the
so-calledφ3 + φ4 model (N = 4, F1 = 0) or FL model because Friedberg and Lee use the
nontopological soliton of the model to describe the confinement of the quarks [10]:

F± = −2(b2
1a2 − a1b3b1− 2b1a2a1 + 4b3a

2
1 − 8a2

1a2)
−3a2 + b3

a3(b3− 6a2)2

−2
−2a1b3 + 3a2b1

b3− 6a2
φ2 ± 2

3

√
2a3(4a1− b1)

18a2
2 − 9a2b3 + b2

3

b3φ
3 +

4

3
a3φ

4 (21)

while theψ function is given by

ψ =
√
±2a3(4a1− b1)

(b3− 3a2)(b3− 6a2)
φ − b1− 4a1

b3− 6a2
. (22)

Under the constraint 3b2 = 8a3, if there is no further constraint on the model parameters, (21)
is an only further possible polynomial selection in addition to the general cases A.1 and A.2
for N 6 6.

Case E.3b2 = 8a3, b3 = a2

If the model parameters are restricted by 3b2 = 8a3 andb3 = a2, one can change some special
solutions of two types of the shifted FL model (we call (5) with (9) the shifted FL model if
N = 4, F0 = 0).

Case E.1.

F = 6F3

5a3
(a1 + b1)φ +

(
6

5
b1− 4

5
a1

)
φ2 +

2

3
F3φ

3 +
4

3
a3φ

4

(
F3 = ±

√
a3(4a1− b1)

5

)
(23)

while

ψ2 = 1

15b3
(5(8a3− 3b2)φ

2 + 15F3φ − 3(4a1− b1) + 9F3a
−1
3 (a1 + b1)φ

−1). (24)

Case E.2.

F = F3

10a3
(4a1− b1)φ +

(
6

5
b1− 4

5
a1

)
φ2 +

2

3
F3φ

3 +
4

3
a3φ

4(
F3 = ±

√
a3(4a1− b1)

5

)
(25)

while

ψ2 = 1

60b3
(20(8a3− 3b2)φ

2 + 60F3φ − 12(4a1− b1) + 3F3a
−1
3 (4a1− b1)φ

−1). (26)

Case F.b2 = a3, b3 = a2

Whence the model parametersb2 andb3 are related toa2 anda3 by b2 = a3 andb3 = a2, we
have three possible polynomial selection ofF for N 6 6.
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Case F.1. In the first subcase, the fieldφ is related to theφ3 model,

F± = 2

75a3
(b2

1 − 8a1b1 + 16a2
1) +

(
6

5
b1− 4

5
a1

)
φ2 ± 2

3

√
2a3(a1− b1)φ

3 (27)

and the correspondingψ is given by

ψ =
√
− 1

5b3

(
5a3φ2 ∓ 5

√
2a3(a1− b1)φ − b1 + 4a1

)
. (28)

Case F.2. The second subcase is related to theφ + φ3 model,

F± =
(
− 88

405
b2

1 −
8

81
a1b1 +

128

405
a2

1 ±
8
√

10

2025

√
(b1− a1)(7b1 + 2a1)3

)
φ√

2a3(a1− b1)

+

(
6

5
b1− 4

5
a1

)
φ2 +

√
2a3(a1− b1)φ

3. (29)

In this case, the fieldψ is determined by

ψ2 = 1

b3

(
− b2φ

2 +
3

2

√
2a3(a1− b1)φ +

1

5
(b1− 4a1)

− 2

2025
√
a3

(
5
√

2(a1− b1)(11b1 + 16a1)± 2
√

5(7b1 + 2a1)3
) 1

φ

)
. (30)

Case F.3. The third subcase is solved by the special shifted FL model,

F± = ± 4

15

√
2a1− 3b1

5a3
(b1− 4a1)φ +

(
6

5
b1− 4

5
a1

)
φ2 +

5

3
a3

b1− a1

3b1− 2a1
φ4 (31)

while the fieldψ is determined by

ψ2 = b1− 4a1

a2

(
a3

3a2(3b1− 2a1)
φ2 +

1

5
± 2

75

√
5(2a1− 3b1)

a3

1

φ

)
. (32)

Case G.b2 = a3, b3 = a2, b1 = −a1

If we put a further constraintb1 = −a1 on the case F, we can get three further possibilities in
addition to the subcases F.1–F.3.

Case G.1. The first subcase is related to theφ3 model

F± = F0 − 2a1φ
2 ± 4

3

√
a3a1φ

3 (33)

with F0 being an arbitrary constant and

ψ =
√

1

b3

(
b2φ2 ∓ 2

√
a1a2φ − b1

)
. (34)

Case G.2. The second subcase can be described by theφ4 model with

F = 4a2
1F
−2
4 (4a3− 3F4) + a1F

−1
4 (4a3− 5F4)φ

2 + 1
2F4φ

4 (35)

whereF4 is an arbitrary constant. In this subcase, the fieldψ is related toφ by

ψ =
√
(a3− F4)(4a1− F4φ2)

a2F4
. (36)
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Case G.3. The third subcase can be also casted to the special shifted FL model with

F = 2F1φ − 2a1φ
2 + 2

3a3φ
4 (37)

whereF1 is arbitrary. The fieldψ in this subcase is given by

ψ =
√

1

a2

(
1

3
a3φ2 − a1 + F1

1

φ

)
. (38)

Case H.b2 = a3
b3−2a2
2b3−3a2

If the model parameters have a constraint condition

b2 = a3
b3− 2a2

2b3− 3a2
(39)

some special solutions of the coupled scalar field system (1) and (2) can be obtained form the
FL model with

F± = 1

3
(9a2

2 − 9a2b3 + 2b2
3)
(b1− 4a1)

2

(b3− 6a2)2a3
− 2

3a2b1− 2a1b3

b3− 6a2
φ2

±4

3

√
a3(a1− b1)

9a2
2 − 9a2b3 + 2b2

3

b3φ
3 + a3

−a2 + b3

−3a2 + 2b3
φ4 (40)

and theψ equation now has the form

ψ =

√√√√ a3

2b3− 3a2
φ2 ± 2

√
a3(a1− b1)

(b3− 3a2)(2b3− 3a2)
φ − b1− 4a1

b3− 6a2
. (41)

Case I.b2 = a3
b3−2a2
2b3−3a2

, b1 = 4a1

Whence two constraints, (31) andb1 = 4a1, are added into (1) and (2), we get a special FL
model (FL model withF0 = 0) to solve the NCSF with

F± = a3

3a2 − 2b3
φ2 ±

√
3a1a3

(b3− 3a2)(3a2 − 2b3)
φ3 +

a3(a2 − b3)

3a2 − 2b3
φ4. (42)

The corresponding solution ofψ is related toφ by

ψ2 = a3

3a2 − 2b3
φ2 ± 2

√
a3a1√

(b3− 3a2)(3a2 − 2b3)
φ. (43)

Case J.b2 = a3
b3−2a2
2b3−3a2

, b3 = 3
2
b1a2
a1

If a further constraint

b3 = 3

2

b1a2

a1
(44)

in addition to (39) is added to the system (1) and (2), a critical FL model (FL model with
F2 = 0) is a possible polynomial selection ofF for N 6 6:

F± = 2(a1− b1)(2a1− b1)

3a3
± 2

3

√
2a3b1√

2a1− b1
φ3 +

1

6

a3(2a1− 3b1)

a1− b1
φ4. (45)
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The corresponding solution ofψ has the form

ψ2 = −1

3

a3a1

a2(a1− b1)
φ2 ± 2

3

√
2a3a1

a2
√

2a1− b1
φ − 2

3

a1

a2
. (46)

For the critical FL model there are no solitary wave solutions and this situation corresponds to
the phase transition point of quark deconfinment in the FL field theory.

Case K.b2 = 4a3
3 , b3 = 6a2

5

Under the constraints,

b2 = 4a3

3
b3 = 6a2

5
(47)

theφ equation is related to the FL model by

F± = 1

64a3
(4a1− b1)

2 +

(
5

4
b1− a1

)
φ2 ± 8

9

√
3a3(a1− b1)φ

3− 1

3
a3φ

4 (48)

and theψ equation has the form

ψ2 = −5

3

a3

a2
φ2 ± 10

9a2

√
3a3(a1− b1)φ − 5

24a2
(4a1− b1). (49)

Case L.b2 = 4a3
3 , b3 = 6a2

5 , b1 = − 4
5a1

In this case,φ is also determined by the FL model with

F± = F0 − 2a1φ
2 ± 8√

15

√
a1a3φ

3− 1

3
a3φ

4 (50)

whereF0 is an arbitrary constant. Theψ field is given by

ψ2 = −5

3

a3

a2
φ2 ± 2

3a2

√
15a1a3φ − a1

a2
. (51)

Case M.b2 = a3b1
a1+2b1

, b3 = a2
a1
(b1 + 2a1)

If the model parameters are restricted by

b2 = a3b1

a1 + 2b1
b3 = a2

a1
(b1 + 2a1) (52)

we have three possible independentF polynomial selections forN 6 6.

Case M.1. The first case is related to the FL model,

F± = F0 − 2a1φ
2 ± 4

√ −a3

9(a1 + 2b1)
(b1 + 2a1)φ

3 + a3
b1 + a1

a1 + 2b1
φ4 (53)

whereF0 is an arbitrary constant. In this case, the fieldψ is

ψ =
√
b1 + 2a1

b3

(
a3

2b1 + a1
φ2 ± 2

√ −a3

2b1 + a1
φ − 1

)
. (54)
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Case M.2. The second subcase is related to the special FL model,

F± = −2a1φ
2 ± 4

3

√
a3a1

a2(3a2 − 2b3)
b3φ

3 + a3
b3− a2

2b3− 3a2
φ4. (55)

In this case,ψ has the form

ψ =
√

a3

2b3− 3a2
φ2 ± 2

√
a3a1

a2(3a2 − 2b3)
φ − a1

a2
. (56)

Case M.3. The third subcase corresponds to the shifted FL model,

F = −6

5

b2
1 − 3a1b1− 4a2

1√
5(−a3b1 + 4a3a1)

φ +

(
6

5
b1− 4

5
a1

)
φ2 +

2

3

√
−a3b1 + 4a3a1

5
φ3 +

4

3
a3φ

4 (57)

and

ψ2 = 1

5a2

√
5a3(4a1− b1)

(
φ +

√
b1− 4a1√

5a3
+

3

5a3
(a1 + b1)

1

φ

)
. (58)

Case N.b1 = a1, b2 = 1
3a3, b3 = 3a2

In this case, the polynomialF for N 6 6 is the special FL model,

F = −2a1φ
2 + 2

3F3φ
3 + 2

3a3φ
4 (59)

whereF3 is an arbitrary constant. In this case, we have

ψ =
√

1

6a2
(2a3φ2 + 2F3φ − 6a1) (60)

for ψ field.

Case O.b3 = a2(3b2−2a3)

2b2−a3
, b1 = 4a1

In this case, a new nontrivial case for theφ field is given by the special FL model

F± = 4a1φ
2 ± 4

√
a1

3a3− 9b2
(3b2 − 2a3)φ

3 + (a3− b2)φ
4. (61)

For theψ field, we have

ψ =
√√√√2b2 − a3

a2

(
−φ2 ± 2

√
3a1

a3− 3b2
φ

)
. (62)

Case P.b1 = 4a1, b2 = −8a3, b3 = a2

Under the constraint conditionsb1 = 4a1, b2 = −8a3, b3 = a2, we get

F = 2F1φ + 4a1φ
2 − 4a3φ

4 (63)

with arbitraryF1. The correspondingψ field has the form

ψ =
√
F1

a2

1

φ
. (64)
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Case Q.b3 = 5
9a2

Whence the model parameterb3 is related toa2 by

b3 = 5
9a2 (65)

we obtain some possibleφ5 model (the model (5) withF = F0+F2φ
2+ 2

3F3φ
3+ 1

2F4φ
4+ 2

5F5φ
5)

to solve the NCSF system (1) and (2).

Case Q.1. For the first subcase, the functionF is given by

F± = 24(15b2 − 8a3)a
2
1

25(11b2 − 6a3)2
− 2a1(25b2 − 12a3)

5(11b2 − 6a3)
φ2 ∓ 2

√
a1(5b2 − a3)(15b2 − 8a3)

5
√

3(11b2 − 6a3)
φ3

+(2b2 − 4/5a3)φ
4 ± 1

25
√
a1

√
3(11b2 − 6a3)(5b2 − a3)(15b2 − 8a3)φ

5 (66)

with a further constraint on the parameterb1,

b1 = − a1b2

11b2 − 6a3
. (67)

The correspondingψ equation is

ψ2 = ±9

50a2
√
a1

√
3(6a3− 11b2)(a3− 5b2)(15b2 − 8a3)φ

3 +
9

25a2
(15b2 − 8a3)φ

2

− ±9

25a2

√
3a1(5b2 − a3)(15b2 − 8a3)

(11b2 − 6a3)
φ − 27

25

(15b2 − 8a3)a1

(11b2 − 6a3)a2
. (68)

Case Q.2. The second subcase ofφ5 model has the form

F = F0 + F2φ
2 − 3a2

3

50F5
(5c − 1)(15c − 8)φ3 +

4

5
a3(5c − 2))φ4 + F5φ

5 (69)

if the model parameters satisfy one more restriction:

(15c − 8)(5c − 1)(45c − 19)

×[b2
1(−483 975c4 + 1004 265c3− 727 389c2 + 219 579c − 23 616)

−8a1b1(11 700c4 + 25 095c3− 42 242c2 + 18 071c − 2400)

+16ca2
1(19 350c3− 24 240c2 + 9899c − 1325)] = 0 (70)

in addition to the constraint (65), wherec ≡ b2/a3, A1 ≡ −2118 075c4 + 2046 375c5 −
33 885c3 + 736 239c2 − 292 222c + 34 560,

F0 = −32a2
1

75a3
{[10(2025c2 − 1940c + 432)a1

−(54 675c2 − 46 745c + 9312)b1](15c − 8)(5c − 1)}
×{2a1A1 + (45c − 19)(161 325c4 − 334 755c3

+242 463c2 − 73 193c + 7872)b1}−1 (71)

F2 = − 2

15

10(25c − 9)(15c − 8)a1− (10125c2 − 8585c + 1752)b1

685c2 − 577c + 120
(72)

and

F5 = ±
√

3a3
3

100

(15c − 8)(5c − 1)(685c2 − 577c + 120)

57b1− 135b1c − 20a1 + 50ca1
. (73)
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The related solution of the fieldψ is given by

ψ2 = 9F5

5a2
φ3 +

9(15c − 8)a3

25a2
φ2 − 27a2

3(15c − 8)(5c − 1)

250a2F5
φ

−3(15c − 8)(213b1− 665b1c + 500ca1− 180a1)

25a2(685c2 − 577c + 120)
. (74)

Case Q.3. The third subcase is

F = − 2
9a1φ

2 − 2
5a3φ

4 + 2
5F5φ

5 (75)

for arbitraryF5 and

b1 = 1
3a1 b2 = 1

5a3 (76)

while theψ field is given by

ψ2 = 9

5a2
F5φ

3− 9

5a2
a3φ

2 − a1

a2
. (77)

Case Q.4. The final one has the form

F = 4
9a1φ

2 + 4
15a3φ

4 + 2
5F5φ

5 (78)

with the arbitraryF5 and

b1 = 4
9a1 b2 = 8

15a3 (79)

while

ψ =
√

9F5

5a2
φ3. (80)

Case R.φα model

To close this section, we write down two special results forarbitrary real constantα with
α 6= 2 andα 6= 4.

Case R.1. If the model parametersbi are related toai by

b1 = 4a1

(α − 2)2
b2 = 8a3

α(α − 2)
b3 = a2α

(α − 2)2
(81)

for arbitrary realα, one can always find a specialφα model to solve the NCSF:

F = − 2a3

α(α − 4)
φ4 − 2a1

(α − 2)2
φ2 +

2

α
Fαφ

α (82)

whereFα may be arbitrary. In this case, the correspondingψ field is given by

ψ2 = (α − 2)2Fα
a2α

φα−2 − a3(α − 2)2

αa2(α − 4)
φ2 − a1

a2
. (83)
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Case R.2. If the model parametersbi andai satisfy the constraints

b3 = a2α

(α − 2)2
b1 = 4a1

(α − 2)2
b2 = 8a3

α(α − 2)
(84)

for arbitrary realα, one can find another specialφα model to solve the NCSF:

F = 4a3

α(α − 2)
φ4 +

4a1

(α − 2)2
φ2 +

2

α
Fαφ

α (85)

whereFα is an arbitrary constant. The correspondingψ field is given by

ψ =
√

Fαφα−2

a2α(α − 2)2
. (86)

4. On the exact solutions of the NKG fields

From the last two sections, we know that whence a solution of a single NKG field is given, a
corresponding solution of the NCSF system is given at the same time. So, in this section we
discussed the solutions of the single NKG equations with polynomial nonlinearities.

4.1. Solutions ofφ4 equation

For cases A, B and G.2 of the last section, the solutions ofφ are those of the known constrained
φ4 equation. In [5], we have list many exact conoidal wave solutions of the constrainedφ4

equation. For instance, ifF1 < 0,F4 > 0 and writeF0 as

F0 = 2F 2
2 k

2

(1 + k2)2F4
(87)

theφ4 equation possesses the exact solution

φ =
√
−2k2F2

(1 + k2)F4
sn

(√
−F2

1 + k2
ξ

)
(88)

where

ξ =
∫ √

B dg (89)

with B ≡ B(g) being an arbitrary function ofg andg being any solution of the base equations

� g = 1

2

dB

dg
(90)

(∇̃g)2 = B. (91)

If we take

B = α2g2 (92)

we have a special solution of the base equations (90) and (91) with (92) [5],

ξ = 1

α
ln g (93)

and

g =
( N∑
γ=1

expα1θγ

)α2

(94)
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with

θγ =
D∑
j=1

P jγ xj + ωγ t + δγ (95)

D∑
j=1

(P jγ )
2 − ω2

γ = 1 γ = 1, 2, . . . , N (96)

D∑
j=1

(P jγ − P jγ ′)2 − (ωγ − ωγ ′)2 = 0 (γ 6= γ ′, γ, γ ′ = 1, 2, . . . , N) (97)

and

α2
1α

2
2 = α2. (98)

The travelling wave solution corresponds toN = 1 in (93) and (94) with (95) and (96). The
constantk in (87) and (88) is the modulus of the Jacobi elliptic function, sn(ξ).

If F2 > 0,F4 < 0 and writeF0 as

F0 = −2
F 2

2 k
2k′2

(k2 − k′2)2F4
(99)

we have

φ =
√
−F2(k2 − k′2)

2k2F4
cn

(√
F2

k2 − k′2 ξ
)

(100)

wherek′ = √1− k2 andξ is same as in (89).
Takingk→ 1, we have two types of solitary wave solutions

φ =
√
−F2

F4
tanh

(√
−F2

2
ξ

)
(101)

with

F0 = 1

2

F 2
2

F4
(102)

and

φ =
√
− F2

2F4
sech

(√
F2ξ

)
(103)

with

F0 = 0 (104)

from (88) and (100), respectively.
Two known solitary wave solutions in [7, 9] are related to (101) and (103) for case A.2,

respectively, and the other known one is related to (101) by using the transformations,
ψ ↔ φ, {ai, bi} ↔ {bi, ai}.

For cases A.1, B and G.2 there are only one possible solitary wave solution for both (101)
and (103). However, for case A.2, there are three nontrivial different subcases for both (101)
and (103). For instance, for the condition (104), the nontrivial cases are: (i)a1 = b1, (ii)
a1 = 2b1, a3 = 2b2, and (iii) b3 = a2(2b1b2 − 2b1a3 + a1b2)/(2a1b2 − a1a3).
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4.2. Solve theφ3 model by theφ4 equation

In cases F.1 and G.1 of the last section, we have to solve the constrained NKG equation

�φ = F2φ + F3φ
2 (105)

(∇̃φ)2 = F0 + F2φ
2 + 2

3F3φ
3. (106)

It is straightforward to prove that if we make the transformation

φ = g2 + c (107)

with c being determined by
2
3F3c

3 + F2c + F0 = 0 (108)

theg function satisfies the constrainedφ4 equation

� g = g2g + g4g
3 (109)

(∇̃g)2 = g0 + g2g
2 + 1

2g4g
4 (110)

with

g0 = c

2
(F2 + F3c) g2 = 1

4(F2 + 2F3c) g4 = 1
3F3. (111)

All the Jacobi elliptic function solutions listed in [5] now can be used. Two standard solitary
wave solutions are

φ = −3(F2 + 2F3c)

4F3
tanh2

(√
−(F2 + 2F3c)

8
ξ

)
+ c (112)

with

c(F2 + F3c) = 3(F2 + 2F3c)
2

16F3
(113)

and

φ = −3(F2 + 2F3c)

8F3
sech2

(√
1

4
(F2 + 3F3c)ξ

)
+ c (114)

with
c

4
(2F2 + 3F3c) = 0. (115)

The correspondingψ is given by (17) with (112) and (114) for case F.1 and (20) with (112)
and (114) for case G.1. It is worth pointing out that the solitary waves forφ are tanh or sech
forms in cases A, B and G.2 while in cases F.1 and G.1 the solitary waves are in tanh2 or sech2

forms.

4.3. Change theφ + φ3 model to theφ4 equation

For case F.2 of the last section, the related constrained NKG equation system is

�φ = F1 + F2φ + F3φ
2 (116)

(∇̃φ)2 = 2F1φ + F2φ
2 + 2

3F3φ
3. (117)

It is easy to prove that if we make the transformation

φ = g2 + c (118)

wherec can be taken as any one of the following values:

0
3

4F3

(
−F2 ±

√
F 2

2 −
16

3
F3F1

)
(119)

then theg function satisfies the constrainedφ4 equations (109) and (110) with

g0 = 1
2(F2c + F3c

2 + F1) g2 = 1
4(F2 + 2F3c) g4 = 1

3F3. (120)
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4.4. Exact solutions of theφ6 model

For case C, the constrained NKG equation system has the form

�φ = F2φ + F4φ
3 + F6φ

5 (121)

(∇̃φ)2 = F0 + F2φ
2 + 1

2F4φ
4 + 1

3F6φ
6. (122)

In [6] (Lou, Huang and Ni), we established the deformation relations between the constrained
φ6 system (121) and (122) and the constrainedφ4 system. Starting from every solution of the
φ4 system, we can get a corresponding solution of theφ6 model. The standard pair are

φ = sn

√12F2C2 + 9F4C + 5F6

6(1 + k2)C2
ξ


×
C sn2

√12F2C2 + 9F4C + 5F6

6(1 + k2)C2
ξ

− 2C(1 + k2)(6F4C + 6F2C
2 + 5F6)

k2(12F2C2 + 9F4C + 5F6)

−1/2

(123)

with C being determined by

2

(
F2 +

F4

2C
+

5F6

18C2

)(
F2 +

F4

C
+

5F6

6C2

)
= 2k2

(1 + k2)2

(
2F2 +

3F4

2C
+

5F6

3C2

)2

(124)

and

φ = cn

√12F2C2 + 9F4C + 5F6

6(k′2 − k2)C2
ξ


×
C cn2

√12F2C2 + 9F4C + 5F6

6(k′2 − k2)C2
ξ

− C(k2 − k′2)(6F4C + 6F2C
2 + 5F6)

k2(12F2C2 + 9F4C + 5F6)

−1/2

(125)

with C being determined by

2

(
F2 +

F4

2C
+

5F6

18C2

)(
F2 +

2F4

C
+

5F6

2C2

)
= −2k2k′2

(k′2 − k2)2

(
2F2 +

3F4

2C
+

5F6

3C2

)2

. (126)

Obviously, whenk → 1, (k′ → 0), the double periodic solutions (123) and (125) reduce
to new types of the topological (kink-like) and nontopological multi-solitary wave solutions,
respectively.

4.5. Exact solutions of the FL model

For cases D, H, I, J, K, L, M.1, M.2, N, and O, the constrained NKG equation has the form

�φ = F2φ + F3φ
2 + F4φ

3 (127)

(∇̃φ)2 = F0 + F2φ
2 + 2

3F3φ
3 + 1

2F4φ
4. (128)

The cases M.2, I, N and O correspond toF0 = 0.
In [6] we also established the deformation relations between the constrained FL model

and the constrainedφ4 system. Starting from every one solution of theφ4 system, we can get
a corresponding solution of (127). Here are three multi-solitary wave solutions:

φsol1 = 1

±√F2e±
√
F2ξ − C2

− C1 (129)
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with C1, C2 being determined by

C1(F3C1− F4C
2
1 − F2) = 0 (130)

F4 − 5

2

(
F3

3
− C1F4

)
C2 +

1

2
(3C2

1F4 − 2F3C1 + F2)C
2
2 = 0 (131)

φsol2 = −3F2

signF3

√
(F 2

3 − 1
2F2F4) ch

√
F2ξ − F3

(132)

and

φsol3 = −1

±√A ch
√
Bξ +C2

− C1 (133)

with

C1 =
F3±

√
F 2

3 − 4F2F4

2F4
(134)

C2 =
−F4(F3± 3

√
F 2

3 − 4F2F4)

3(F 2
3 − 4F2F4 ± F3

√
F 2

3 − 4F2F4)

(135)

B = 1

2F4
(F 2

3 − 4F2F4 ± F3

√
F 2

3 − 4F2F4) (136)

and

A =
−F 2

4F3(−F3± 3
√
F 2

3 − 4F2F4)

9(F 2
3 − 4F2F4 ± F3

√
F 2

3 − 4F2F4)

. (137)

4.6. Exact solutions of the shifted FL model

The following constrained NKG equation system:

�φ = F1 + F2φ + F3φ
2 + F4φ

3 (138)

(∇̃φ)2 = 2F1φ + F2φ
2 + 2

3F3φ
3 + 1

2F4φ
4 (139)

is related to cases E, F.3, G.3, M.3 and P of the last section (F3 = 0 for cases F.3 and G.3).
It is quite easy to see that the constrained NKG system (138) and (139) can be solved by

means of the FL model discussed in the last section. Using a (shift) transformation

φ = g + c (140)

with c being given by

F1 + cF2 + c2F3 + c3F4 = 0 (141)

the equation system becomes

� g = g2g + g3g
2 + F4g

3 (142)

(∇̃φ)2 = g0 + g2g
2 + 2

3g3g
3 + 1

2F4g
4 (143)

while gi are given by

g0 = c(2F1 + cF2 + 2
3c

2F3 + 1
2c

3F4) (144)

g2 = F2 + 2cF3 + 3c2F4 (145)

g3 = 2
3F3 + 2cF4. (146)

The exact solutions of (142) and (143) have been discussed in the last section.
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4.7. Exact solutions of theφ5 model

The related constrained NKG equations of theφ5 model are

�φ = F2φ + F3φ
2 + F4φ

3 + F5φ
4 (147)

(∇̃φ)2 = F0 + F2φ
2 + 2

3F3φ
3 + 1

2F4φ
4 + 2

5F5φ
5. (148)

To our knowledge, there is no exact known solution of (147) in the literature. Using the
general discussions of [11] (or by direct calculation), a special type of the system (147) and
(148) can be written as∫ φ dy√

F0 + F2y2 + 2
3F3y3 + 1

2F4y4 + 2
5F5y5

= ξ + ξ0 (149)

with ξ being given by (89). To write out some explicit solution of (149) is still quite difficult
because of the difficulty of the integration. To get some explicit solitary wave solution of (147),
one may use the nonstandard truncation approach of the Painlevé analysis given in [12]. Here
we write down only one exact solution but omit the detailed derivation procedure and other
possible solutions because of their complexity. Further details on the solutions of theφ will
be reported in a separate paper [13]. In [13], we see that theφ5 model is useful not only to
get some special solutions of the NCSF but also to solve other nonlinear models, such asφ8

models.
Theφ5 model (147) forF3 6= 0 possesses a multi-solitary wave solution

φ = q +
9q4

4p(3F0 + 8F3q3)
χ2 (150)

with p being an arbitrary constant andχ being given by (c1 = exp(k1ξ0))

(χq2 − A−)B−(χq2 − A+)
B+

(χq2 +A−)B−(χq2 +A+)B+
= c1 exp(k1ξ) (151)

whereξ is still determined by (89) and

A± = 2
9

√
2F3qp

(
−8F3q

3±
√

3F0(32F3q3 + 15F0)
)

(152)

B± = 4
9B±

(
45F 2

0 ± 8F3q
3
√

3F0(32F3q3 + 15F0) + 96F0F3q
3
)

(153)

k1 = − 4

27q

√
−F3(3F0 + 8F3q3)pF0q(32F3q

3 + 15F0)(−15F0 + 8F3q
3) (154)

q = − 3q1

4F3q2
(155)

q1 = −270F5F
2
0F4F

4
2 − 780F5F

2
0F

3
2F

2
3 + 600F5F

3
0F4F

2
3F2 + 108F5F0F

6
2

−400F5F
3
0F

4
3 + 225F3F

5
2F4F0 − 320F 3

3F
2
0F

2
2F4 + 570F 3

3F
4
2F0

−90F3F
7
2 + 520F 5

3F
2
0F2

q2 = 810F5F
2
0F

3
2F4 + 180F5F

2
0F

2
2F

2
3 − 432F5F0F

5
2 − 360F 3

3F
2
0F4F2 − 675F3F0F

4
2F4

+40F 3
3F0F

3
2 + 360F 6

2F3− 120F 5
3F

2
0

if the parametersFi satisfy the conditions

144F5F0q
5 + 9F 2

0 + 48F0F3q
3 + 64F 2

3 q
6 = 0 (156)

12F2q
2 + 15F0 + 16F3q

3 = 0. (157)

More concretely, if we take

F0 = 1
2 + 3

10

√
5 F3 = − 16

45

√
5 q = 3

8

√
5 p = 1
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theχ function has a simple form

(
√

10χ + 1)3(
√

10χ − 3)

(
√

10χ − 1)3(
√

10χ + 3)
= c1 exp

(
12
√

10

25
ξ

)
. (158)

4.8. On the exact solutions of the specialφα model

In the last section, case R is related to a specialφα model for arbitrary realα,

�φ = F2φ + F4φ
3 + Fαφ

α−1 (159)

(∇̃φ)2 = F2φ
2 +

1

2
F4φ

4 +
2

α
Fαφ

α. (160)

One special type of solutions can be expressed by the general integration∫ φ dy√
F2y2 + 1

2F4y4 + 2
α
Fαyα

= ξ + ξ0 (161)

with ξ being given by (89). In my knowledge, there is no known explicit function to express
the integration of (161) for general realα except forα = 3, 5, 6, 8. Forα = 3, 5, and 6, the
results have been discussed in the previous sections. In [13], we report the results forα = 8.

5. Summary and discussion

In summary, for the nonlinear coupled scalar field equations there are more abundant solitary
wave solutions than for single scalar field models. Foreveryselected single scalar field
model (5), there may be some types of special solutions which are also solutions of the NCSF
equations (1) and (2). After restricting the functionsG andF in (5) and (6) as polynomial
functions ofφ up toφ6, we have obtained 30 types of concrete exact solitary wave solutions
and conoidal wave solutions of the NCSF by means of theφ4 , φ6, φ3, φ5 andφ3 + φ4 (FL)
models. If we do not put any constraint on the model parameters, there exists only one possible
nontrivial polynomial selection (case A.2) forN 6 6. Actually, we believe that case A.2 is the
only polynomial selection for anyN without any constraint on the model parameters and we
have checked the conclusion by computer algebras up toN = 10. Because of the difficulty in
calculations, we cannot list all the possible polynomial selections here forN > 6. Two special
types ofφα models for arbitrary realα can also be used to solve the NCSF.

From (1) and (2) we know that if we make the transformations

φ ↔ ψ ai ↔ bi (162)

the mode equations are form invariant. So we can get another 32 types of different exact
solutions by using the transformations (162) to the solutions obtained in sections 3 and 4.

To understand the richness of the solitary wave in coupled nonlinear scalar fields, we
can compare the travelling wave solution of the model with the classical mechanics. For the
travelling wave solutions of a generalized nonlinear coupled scalar field system, we have

φT T = −Vφ(φ,ψ) ≡ −∂V
∂φ

(163)

ψTT = −Vψ(φ,ψ) ≡ −∂V
∂ψ

(164)

with

T =
∑D

i=1 kixi + ωt√∑D
i=1 k

2
i − ω2

. (165)
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Comparing (163) and (164) with the classical mechanics, the equation system (163) and (164)
describes a ‘ball’ (particle) that is rolling on a camber,z = −V (x = φ, y = ψ), without
friction. A kink-like solitary wave is corresponding to the ball rolling from one peak of−V
to another peak with the same height while a ‘bell’ or ‘ring’ type solitary wave corresponds
that the ball rolls down a peak and comes back to the same peak finally. For a single scalar
field, the similar mechanical simulation is a particle moving in one-dimensional space (x = φ)
with potentialV (x). There may be various (or even infinitely many continuous) degenerate
minima ofV in two-dimensional ‘space’{x = φ, y = ψ} and there may be various ways from
one peak to another (or come back to the original peak). However, for a single scalar field,
there exists only one way from one peak to another (or come back to the same) peak. That is
why we can obtain more abundant solitary wave solutions of coupled scalar fields than those
of single scalar fields.

In principle, one may obtain some special solutions of the NCSF system (1) and (2) for
every given G by solving the model equations (5) and (6) with (7). Further details on the
solutions of the system (5) and (6) with (7) will be discussed in future studies.
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